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In genetic studies on animals and plants, the proof of the allelomorphic 
nature of two genes, one of which is dominant, has depended largely on 
the obtaining of the 3 :  1 ratio from the matings of known heterozygotes 
or of the 1 : 1 ratio from the backcross. Heterozygotes have been relatively 
easy to determine in such cases by using F1 individuals, or by making 
test matings. When we approach the study of human heredity, however, we 
are unable to make test matings, and we are faced with considerable 
difficulty in determining whether an individual exhibiting a dominant 
trait is homozygous or heterozygous. In some instances this may be deter- 
mined from a knowledge of the individual’s parents or off spring. In many 
cases, however, our data are limited to two generations. Furthermore, a 
human family is never large enough to prove that an individual showing a 
dominant trait and producing no recessive off spring is really homozygous. 

It becomes necessary, therefore, in the study of human heredity, to use 
an analysis which obviates the need of distinguishing between homozygous 
and heterozygous dominants. In a random series of matings where both 
parents show a dominant character, the offspring will show dominance 
and recessiveness, respectively, in a proportion greater than 3 : 1, because 
of the fact that some of the dominant parents are homozygous, and will 
produce all dominant offspring. Similarly, in a random series of matings 
in which one parent shows the dominant character, the other the recessive, 
the ratio of dominance to recessiveness among the offspring will be greater 
than 1 : l .  

The exact proportions of recessives to be expected in these types of 
matings may, however, be predicted very exactly by an analysis of the 
genes on a frequency basis. These proportions will vary among various 
factors, depending on the relative frequencies of the allelomorphic genes 
in the population, and will vary for the same factor among different 
races, if the frequencies of the genes vary from race to race. 

The expected proportions of recessive offspring from the matings of 
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dominants with dominants, and dominants with recessives, respectively, 
are calculated as follows: 

Let p =frequency of the dominant gene of a pair of allelomorphs, and let 
q =frequency of the recessive gene. 

Then p +q = 1. It is readily seen that 
p2+2pq =the dominant individuals of the population. (A) 

q2 = the recessive individuals of the population. (B) 
q = &  
p = l - d i  

A relationship may be readily demonstrated between the frequencies of 
the allelomorphic genes and the proportions of recessive offspring to be 
expected in random matings of dominants with dominants, and dominants 
with recessives. 

Since p2 = homozygous dominants and 2pq =heterozygous dominants, 

=proportion of dominants which are homozygous P2 
P2+2P9 

2pq =proportion of dominants which are heterozygous 
P2 + 2Pq 

The only recessive offspring produced in matings of dominants with 
dominants will be one-quarter of the offspring of matings of heterozygous 
dominants with heterozygous dominants. Similarly, the only recessive 
offspring produced in matings of dominants with recessives will be one-half 
of the offspring of the matings of heterozygous dominants with recessives. 
Formulae for these proportions are derived as follows: 

Let R =proportion of recessive off spring to be expected from matings of 
dominants with dominants, 

And S =proportion of recessive offspring to be expected from matings of 
dominants with recessives. 

Then 

and 

R=1/4 (  2Pq >'=(---) q 2  
P2 + 2Pq P+% 

Since the results of these formulae will vary depending on the frequen- 
cies of the genes concerned, which in turn are derived from the proportion 
of recessive individuals in the general population, the following table has 
been prepared. This table gives directly from the observed proportion of 
recessive individuals in the population, the expected proportion of reces- 
sive offspring from matings of dominants with dominants, and dominants 
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with recessives. The calculations were done to six decimal places with an 
electric Marchant calculator, and the results are presented in the table to 
the nearest fourth decimal place. 

While the table will be particularly useful in studies of human heredity, 
it will be found applicable to studies of animals and plants, where i t  is 
impractical or impossible to determine the heterozygosity of dominants. 
It is not necessary, for example, to make the general statement so often 
encountered in genetic studies, that “from certain matings of dominant 
with dominant, a ratio approaching 3: 1 was obtained.” 

As an example of the use of the table, it is found that among white 
Americans, .298 are unable to taste phenyl-thio-carbamide (SNYDER 1932, 
Ohio Journal of Science 32:436). This taste deficiency appears on simple 
inspection of the family histories, to be an autosomal recessive character. 
To further prove the unit character nature of the deficiency, the table 
indicates that in matings of tasters with tasters (Column R) we should 
expect .1247 of the offspring to be recessive, that is, taste-deficient. From 
a study of 800 families we find that in such matings .1228 of the offspring 
are recessive, a difference of .0019 k .007. Similarly, in matings of tasters 
with non-tasters, we find (Column S), that we should expect .3531 of the 
offspring to be recessive if we are really dealing with a unit character. 
The proportion actually found is .3653, a difference of .0122 

The probable errors of the observed and calculated proportions are as 
follows: 

For the P.E. of the observed proportions, the well-known formula 

. 6 7 4 5 d 5  is used, where x =observed proportion of dominant children, 

y =observed proportion of recessive children, and n =total number of 
offspring, for each type of mating. 

For the calculated proportions, where N = 100 or more, the formulae are 

.012. 

n 

- 
.6745 (1 - 4 6 )  b 

P . E . ( L )  P+Q = (1 + 4 G ) Z  d N ( 1 -  b) 

where N=Total  number of individuals tested in deriving A and B. In  
practice, b, which is the true value of the proportion of recessives in the 
population, must be taken as B, the observed value from the complete 
sample of individuals studied, just as in the foregoing familiar formula 

.6745 +/@, x and y actually represent the true proportions, but are in 
n 

practice taken as the observed proportions. 
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Since p and q are subject to error because they are derived from A and B, 
which are themselves representative only of a sample of the whole popula- 
tion, the derivation of these formulae is as follows: 

q 

Let b =true value of the proportion of recessives in the population. 
And B =the value of b obtained from a sample of the population. 
Then B = b +e 
In which e=the difference between the value of b calculated from the 
sample and the true value of b. 
Since True q = v'b 
and True p = 1 - v'6 

Then True - = ~ 

But the value of b calculated from a sample may be in error by an amount 
e so that the obtained value of q = v'b +e 

DERIVATION OF A FORMULA FOR THE PROBABLE ERROR OF - 
P+2q 

q 6 
p+2q l+dG 

- 

Hence calculated - may be in error by an amount equal to Calcu- 
P+% 

z/b- 4 6  -- q 
or E, the error in - - 

P+Q P+% p + 2 q - l + d &  l + d b  
- (1) 

q True - lated -- 
q 

- 
Inverting, l + d b + e =  '+" o r d b + e =  

1 - (1 + A) E 

Hence, 

For simplicity in symbols we may now let ___ ' k  = 
l+& 

k&+E 
Equation (3) then becomes m e  = 

k-E 

(3) 

(4) 



HUMAN INHERITANCE 5 

Now, to eliminate E in the denominator, both numerator and denominator 
of the right side of equation (4) are multiplied by k3+k2E+kE2+E3. The 
equation resulting is: 

(5 )  
k 4 d b  + k2E +kE2+E3+E4 

m e  = 
k4 - E4 

Squaring both sides of Equation ( 5 )  

(ks - 2k4E4+E8 
) (ksb + k4E2+k2E4+E6+E8 +2k6fiE b+e= 

+ 2k5dbE2+ 2k4&E3 + 2k4.\/1;E4 + 2k3E3 + 2k2E4 + 2k2E5 

+2k E5+2kE6+2E7). (61) 
However, the value of E cannot exceed .5 and in case the sample from 
which b is computed includes 100 or more cases, it is highly improbable 
that E will exceed .03. Therefore, powers of E higher than E3 may be 
disregarded since their values approximate zero. Equation (6) then be- 
comes : 

b+e =- (k8b+2k6fiE +k4E2+ 2k5<bE2+2k4<bE3+2k3E3) 
1 
k8 

e=--- 2 d L  E +  ( k ; + ~ ) E ' f  1 246  (F+~;;>E~. 2d6 2 Hence, 
k2 (7) 

4b 1 2 d L 2  2 d L  2 
Squaring, e2=-E2+ k4 (F+F) E4+(7+--) E6 

4d& 2 d b  2 
E3+- -+- E4 

446 1 2 d b  
+F(F+F) k2 ( k4 k5) 

1 246 2 d L  2 
+2  (k4 -+- k3 ) (F+F) E5* 

Summing this expression and disregarding values of z E 3 ,  x E 4 ,  z E 5 ,  
z E 6 ,  all of which approximate zero, we have, 

4b 
z e 2 = G  C E 2 .  

But, since e is the error in estimating the proportion of b in the population, 

the standard deviation of e =  

Then 
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a - 1-45 - k4ab k4a Hence, CE2 =- =- = 
4b 4 4 ( 1 + ~ % ) ~  4(1+~ ' /b)~  

Now, to evaluate CE, let us go back to equation (7). 

Summing this expression and disregarding values of x E 3 ,  which ap- 
proximate zero, we have: 

But the sum of the errors in estimating b may be assumed to be zero, hence 

Therefore 

Since 

then 

- 2 d L  CE= - (-+- 2'/6) CE2. 
k2 k4 k3 

1 1 
2k2db k 

CE = - (-+-) CE2. 
k4a 

CE2=?, 

(9) 

The standard deviation of E, aE = ~- - . I/ ","' (YY 
Hence, aE= d&- (- *-= 

k2a 

16k4abN - k4a2 - 4k5a2d/b - 4k6a2b =J 64bN2 

Then the 

Since the sum of the last three terms under the radical is very small in 
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relation to the first term when N is 100 or more the last three terms may 
be omitted for approximate calculations. 

q .674.5(1-d&) In  this case, P.E. of -- - 
p+2q 2(1+dh)  

DERIVATION OF A FORMULA FOR THE PROBABLE ERROR O F  - 
(P+92J2 

In the previous section a formula for the probable error of - 
P + h  

was developed. Using the same symbols as before the calculated value of 

may be in error by an amount equal to: Calculated 

2 

Hence, G, the error in (1 1) 

But since 

then 

(Equation (1)) 
<b -~ 

l + d W e  1+di;’ 
E =  

G=E2+- 2v‘% E. 
1+d6 

Summing, CG= CE2+--- 2~ CE. 
1 + d b  

Since 

and 

and 

then 

k4a 
CE2’? 

k2a k3a 
8 d b  4 

C E  = - -_--- 

1 k=- 
I+&’ 
k4a k3a 
4 4 

CG=---(l-22/i;)--. 

(Equation (8)) 

(Equation (9)) 

4b 
E2. (14) 

4 d L  G2 E4+ ___ 
1 + t / ~ ~ ~  +(I + dc)~  Squaring Equation (1 2) : 

4 4 6  
Summing, G2 = xE4 +-- 

1 + d b  
4b 

CE2. 
C E 3 + ( l + d ~ ) 2  
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However, we may disregard values of x E 3  and CE4 since they ap- 
proximate zero. 

Hence, 
4b 

C G 2 =  C E 2  = k6ab. 
(1 +dW 

The standard deviation of G, UG = 

Therefore, a G  = 
N N 

1-d6 16Nb (1 -2-\/5;)2 2(1-22/b) 

4N(1+ dbI2 d K  - ( l + d b ) 2 +  l + d L  ' 

CrG = - 

(16) 
Then, the P.E. of 

Since the sum of the last three terms under the radical is very small in 
relation to the first term when N is 100 or more the last three terms may 
be omitted for approximate calculations. 

.6745(1-&) / b 
In this case, P.E. of - = 

<,$2,> (1+dTl2 'v N(1-b) ' 

I wish to thank Dr. RALPH TYLER for his kind assistance and sugges- 
tions in deriving these probable error formulae. 

The table follows. It will be seen that values are give.n for proportions 
of recessives ranging from .001 to .999. For extremely rare dominants or 
recessives, where the proportion of recessives in the population is difficult 
to determine accurately, other methods of analysis must be used. These 
will be discussed in a later publication. In  the table below, 

B =proportion of recessive individuals in the general population, 
R =proportion of recessive offspring to be expected in random matings 

S =proportion of recessive offspring to be expected in random matings 
of dominants with dominants, and 

of dominants with recessives. 
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W h W O \ O  .-4"*v) 
3 3 - 1 4  
3 3 3 3 -  . . . . .  

W h a ) Q \ O  
W W W W h  
0 0 0 0 0  

W h W O \ O  
h h h h G 3  
0 0 0 0 0  

3 " * m  
W W W "  
0 0 0 0 0  
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.+“*lo W h W O \ O  3“*10 W t - W Q \ O  3 “ * v )  W h W Q I O  * 0 0 0 0 0  0 0 0 0 3  3 3 3 3 3  3 3 3 3 N  ““N “ m m m  
? ? ? ? ?  ? ? ? ? ?  ? ? ? ? ?  ? ? ? ? ?  ? ? ? ? ?  ? ? ? ? ?  

~ $r-.ggg o \ “ W 4  * t - o m w  “ * U 3  m t - a m v )  
0 0 0 -  4 4 ” N  “ m m 4  - + * * m m  % S S 3 8  

0 0 0 0 0  8 3 4 3 4  3 3 3 3 3  3 3 3 3 3  3 3 3 3 3  33-33 
3 3 3 4 3  3 3 3 3 3  3 4 - 3 3  3 d 3 3 3  3 4 4 - 3  3 3 - 3 4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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