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The problem before us in the present paper is to discover the changes 
which are brought about by following a given system of consanguine 
mating in a population which has previously been breeding at  random 
and has reached equilibrium as regards the distribution of Mendelian 
factors. Formulae were derived in the first paper of this series (WRIGHT 
1921) by which the essential data for any generation can be expressed in 
terms of those for the preceding generation, provided that the system of 
mating is such that the correlation between mated animals can be so 
expressed. These formulae are repeated here for convenience. The 
correlations and path coefficients are represented by small letters. Primes 
are used to indicate the preceding generation. 
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FORMULAE 

Correlation between zygotic formulae of mates, m = (p (a'b'm') 
Correlation between gametes from one gametocyte, g = f' 
Squared path coefficient, zygote to gamete, b2 = 1 z (1  + f ' )  
Correlation between uniting egg and sperm, = b 2 m  

1 
Squared path coefficient, gamete to fertilized egg, a2 = 

2 0  + f )  
Percentage of heterozygosis, 

Determination by heredity, 

As in the previous paper, the percentage of heterozygosis is calculated 
for pairs of allelomorphs which are equally represented in the population. 
On this basis, 50 percent of the individuals are heterozygous in the original 
random-bred stock. 

The correlations between the characteristics of individuals depend, of 
course, on the degree of determination by heredity (h2) as well as on the 
correlation between the zygotic formulae. The formulae are given below 
both in the general form under which part of the variation may be due to 
tangible environmental factors (e2) and part to chance in development 
(d2) ,  and also for the case in which variation is wholly genetic (h2 = 1). 
The results in the present paper will be expressed on this latter basis, but 
may easily be converted into the more general form if h2, e2 and d2 are 
known. The results will also be given on the basis of no dominance. 
Allowance can be made for perfect dominance in the typical case in which 
dominant and recessive gametes are equally numerous, by multiplying 

1 
each of these correlations by -- - The correlation between brothers 

l + P  
(roo) as given below applies best to litter-mates in so far as i t  involves e2, 
common environmental influences. 

General formulae (1z2 + d 2  + e2 = 1) .  N o  dominance 

Correlation between mates = m h'2 
Correlation between parent and offspring rpo = abhh' (1 + m )  
Correlation between brothers .roo = 2a2b h2 (1  + m) + e2 

Complete determination by heredity (h2 = 1 ) .  I\jo dominance 

Correlation between mates rpp  = m 
Correlation between parent and offspring rpo = ab (1 + m )  
Correlation between brothers roo = 2a2b2 (I + m )  
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BROTHER-SISTER MATINGS 

As the reader may feel some doubt as to the validity of the method of 
analysis used here, i t  will be well to begin with a case in which the results 
have already been determined by direct methods. We will start with a 
population which has been mating at random and has reached Mendelian 
equilibrium. We will assume that after a certain date nothing but brother- 
sister matings are made. The population will become broken up into 

FIGURE 1.-Continued mating of brother with sister follo~ving random mating. 

permanently separate, but branching lines of descent, as illustrated in 
the diagram (figure 1). In this case the correlation between mates is 
simply that between a brother and sister, produced by the preceding 
generation. The key formula is thus: 

m = 2arzbf2 (1 + mr) 

The work of finding the path coefficients, correlations, etc., in succeed- 
ing generations can be arranged as shown in table 1. 

The percentage of heterozygosis as given by the present method is the 
same as that derived by FISH (l9l4), PEARL (1914) and JENNINGS (1914) 
by direct methods, starting from a population of AA + 2 Aa + aa. On 



INBREEDING AND THE COMPOSITION OF A POPULATION 127 

starting from a cross of Aa X Aa, the result is the same except for a lag 
of one generation, there being no correlation between the brothers and 
sisters of the first generation. 

TABLE 1 

The work of calculation is given in full above as an illustration of the 
general method, In the present case, the formula can easily be trans- 
formed in such a way that most of the series can be written from inspec- 
tion for any number of generations. The key formula 

m  = 2 ~ ' ~  6'2 (1 +m') 
can be written in the form 

Since 
f = mb2 and 6 2  = 3 (1 + f ' ) ,  

we have 
f = t (1 + 2 f 1  + f l ' )  

giving us a formula by which the series of values of the correlation between 
uniting gametes can easily be written for any number of generations with- 
out calculating the values of other variables. Since g = f' this also gives 
us the series of correlations between gametes resulting from gametogenesis. 
From the equations 

a n d p  = + ( I  - f )  

the corresponding series can be written as far as desired. 
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The various series can be expressed in terms of p, the percentage of 
heterozygosis, by substituting the value f = 1 - 2 p in the above equations, 

The last equation by means of which the percentage of heterozygosis can 
be mitten for any number of generations is of special interest, as i t  gives 
a demonstration of JENNINGS'S (1914) empirical formula, according t o  
which the percentages of heterozygosis in succeeding generations can be 
written as a series of common fractions 9, j, A, A, etc., in which the 
numerators are the successive numbers of the Fibonacci series, each being 

TABLE 2 

Percentage of heterozygosis. 

GENER- 
ATION 

SELP- 
FERTILI- 
ZATION* 

DOUBLE 
FIRST 

20USINS2 
(FIGURE 

5) 

RALF-BROTHER AND SISTER 
QUAD- 
RUPLE 
SECOND 

(Cr:?,"," 
6 )  

0.500 
0.469 
0.453 
0.438 
0.422 
0.406 
0.338 
0.281 
0.000 

Oz;: 
COUSINS 

-- 
0.500 
0.484 
0.477 
0.469 
0.461 
0.453 
0.416 
0.382 
0.000 

Figure 9 Tigure 7 

0.500 
0.438 
0.375 
0.328 
0.285 
0.248 
0.124 
0.062 
0.000 

SINGLE 
FIRST 

COUSINS 
(FIGURE 

10)  Figure 8 
-- 

0.500 
0.438 
0.391 
0.348 
0.310 
0.276 
0.154 
0.085 
0.000 

SINGLE 
SECOND 

c o u s I N s t  
(FIGURE 

12) 

* Repeated mating back to a homozygous sire (figure 3) results in the same rate of decrease in 
heterozygosis as self-fertilization. 

Mating of offspring with younger parent (figure 4) generation after generation results in same 
series as brother-sister mating. 

J Continuous mating of half-first cousins (figure 11) rapidly reaches equilibrium a t  0.481. 

the sum of the two preceding, while the denominators double each genera- 
tion. We will find'that analogous rules can be applied to some of the more 
complex systems of breeding. The same relation can also be expressed in 

P"' the form, p = p' - -. 
8 

In  interpreting the correlations YO, and Y,, in this and other cases, i t  is 
of course to be understood that we are dealing with a population represent- 
ing all lines of descent from the original random-bred population. The 
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correlation between parent and offspring (r,,) brings out the rapidly 
increasing control over heredity due to the inbreeding. The correlation 
between brothers (roo) brings out the increasing uniformity among the 
progeny of a single pair. The percentage of homozygosis (1 - p)  meas- 
ures the degree of fixation of heredity, and as far as possible, the pre- 

TABLE 3 

Correlation between mated individuals. 

GENER- 
ATION 

SELP- 
FERTILI- 
ZATION 

1.000 
1.000 
1.000 
1.000 
1 .ooo 
1.000 
1 .ooo 
1.000 
1.000 

QUAD- 
RUPLE 
SECOND 
:ousINs  
[FIGURE 
6) 

IROTEER- 
'ISTER ' 

(F1y;TBE 

0 
0.500 
0.600 
0.727 
0.792 
0.843 
0.953 
0.985 
1.000 

SINGLE* 
SECOND 
COUSINS 
(FIGURE 

12)  

0 
0.037 
0.037 9 

0.037 
0.037 
0.037 
0.037 
0.037 
0.037 

Dzg 
COUSINS 
(FIGURE 

5) 
-- 

0 
0.250 
0.333 
0.421 
0.500 
0.560 
0.754 
0.853 
1.000 

EALP-BROTHER AND SISTER SINGLE 
FIRST 

COUSINS 
(FIGURE 

1 0 )  

3CTUPLE 
THIRD 

COUSINS 
Figure 7 - 
0 
0.250 
0.444 
0.550 
0.640 
0.705 
0.877 
0.944 
1 ,000 

- 
Figure 9 

- 
* Half-first cousins m = 0.071 

TABLE 4 

Correlation between parent and oflspring. 

OCTUPLE 
TKIRD 

COUSINS 

0.500 
0. S23 
0.541 
0.556 
0.569 
0.583 
0.642 
0.690 
1.000 

3ROTEER. 
SISTER 

(FIGURE 
1) 

0.500 
0.671 
0.763 
0.827 
0.869 
0.900 
0.970 
0.990 
1 .ooo 

GATE,"- 
-- 

0 
1 
2 
3 
4 
5 

10 
15 
m 

SELF- 
FERTILI- 
ZATION 

0.500 
0.817 
0.926 
0.966 
0.984 
0.992 
1.000 
1.000 
1.000 

HALF-BROTHER AND SISTER .,":,",": 
COUSmS 

("'ZPRE 
0.500 
0.589 
0.649 
0.693 
0.732 
0.764 
0.867 
0.920 
1.000 

SINGLE SINGLE* 
FIRST SECOND 

COUSINS COUSINS 

QUAD- 
RUPLE 
SECOND 
COUSINS 
(FIGURE 

6) -- 
0.500 
0.546 
0.580 
0.606 
0.630 
0.653 
0.742 
0.803 
1.000 

Figure 7 Fieure 8 Figure 9 
--- 
0.500 0.500 0.500 
0.589 0.589 0.589 
0.685 0.667 0.649 
0.747 0.725 0.688 
0.795 0.770 0.717 
0.831 0.805 0.740 
0.929 0.908 0.805 
0.967 0.952 0.839 
1.000 1.000 1.000 

* Half-first cousins t-90 = 0.536. 

potency to be expected in outside crosses. This is on the assumption that 
prepotency is due to homozygosis in dominant factors. 

I t  is easy to see that in the present case r,, and roo approach unity, while 
the percentage of heterozygosis approaches 0. The values for genera- 
tions l to 5 and 10, 15 and co are given in tables 2, 3, 4 and 5. 
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TABLE 5 

Correlation between offspring of a mating. 

GENER- 
ATION 

SELP- 
FERTILI- 
ZATION 

- 
QUAD- 
RUPLE 
SECOND 

COUSINS 
(FIGURE 

6) 

)ROTHER- 
SISTER 

(FIGURE 

0.500 
0.600 
0.727 
0.792 
0.843 
0.879 
0.963 
0.989 
1.000 

- 

OCTUPLE 
THIRD 

COUSINS 

- 
0. 500 
0.515 
0.537 
0.552 
0.565 
0.579 
0.638 
0.686 
1 .ooo 

Dizg 
YE:"," 

5) 
-- 

0.500 
0.556 
0.632 
0.675 
0.714 
0.749 
0.857 
0.914 
1.000 

HALF-BROTHER AND SISTER 

Figure 7 
- 
0 .  500 
0.556 
0.650 
0.721 
0.770 
0.810 
0.919 
0.962 
1 ,000 

Figure 8 
- 
0.  500 
0.556 
0.641 
0.701 
0.748 
0.786 
0.898 
0.947 
1.000 

- 
Figure 9 
- 
0.500 
0.556 
0.632 
0.673 
0.705 
0.730 
0.800 
0.835 
1 ,000 

* Half-first cousins roo = 0.536. 

SINGLE SINGLE* 
FIRST SECOND 

COUSINS COUSINS 

SELF-FERTILIZATION 

(FIGURE 
10) 

It may be interesting to consider the case of self-fertilization as another 
check on the method of analysis. Self-fertilization gives the same results 
as a system in which individuals are mated which are identical in genetic 
constitution with respect to each factor. This means that m equals 1. 
We have 

f = b2 = a (1 +g) = a  (1 +fl) 
p = + ( 1 - f ) = * ( 1 - f )  + p t  

(FIGURE 
12) 

Thus the percentage of heterozygosis is simply divided by two in each 
succeeding generation, giving JENNINGS'S well-known series 4, a, +, A- 
(JENNINGS 1912). 

PARENT-OFFSPRING MATING 

The general formulae which have been given, were calculated on the 
basis that the two parents were derived symmetrically from the original 
stock. Modifications may become necessary if the parents belong to 
different generations. The analysis of parent-offspring matings is of inter- 
est a an illustration of the flexibility of the method, besides giving ad- 
tional checks. 

JENNINGS (1916) gives formulae for a number of systems of mating 
parent with offspring. One of these is the mating of the daughters with 
the sire, generation after generation, as in figure 2. 

We will start with a random lot of both sexes. The path coefficient, 
sire to germ-cells, will always be d$, the,value in a random stock. The 
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path coefficients, sperm to fertilized egg, and ovum to fertilized egg, will be 
equal, because the chance of getting a certain factor from the group of 
sires is the same as from the dams. 

FIGURE 2.-Mating of sire of unknown genetic constitution with daughters, granddaughters, 
etc., generation after generation. 

FIGURE 3.-Mating of homozygous sire with daughters, granddaughters, etc., generation 
after generation. 

The key formula in the present case is clearly: 

b = d+ (1 + f') 

The last formula gives a means of writing the percentages of heterozygosis 
in successive generations by inspection. We obtain the series +, ?F, &, 
&$, etc. By putting p' = p,  we obtain p = as the limit when equilib- 
rium is reached. These figures are the same as those given by JENNINGS 

(1916). 
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Figure 3 represents the same system of breeding as the last, except that 
the males are all homozygous (AA and aa). 

The constitution of the male gametes is now completely determined, 
nothing being left to chance 

m = a' + a'b'm' 
f = bm 

1 + f' m = a' (1 + f') = d-- 
2 

Thus in this case, the percentage of heterozygosis is halved, each gen- 
eration giving the series 3, 2, $, e t ~ .  

If all the original males had been of type AA and the original females 
of type aa, or vice versa, the results would obviously have been the same as 
that given above, which agrees with JENNINGS'S (1916) formulae 35 and 36. 

This system of breeding is essentially that known among live-stock 
breeders as grading up. Males of the same pure breed, which is presumably 
homozygous in many factors, are used generation after generation on a 
scrub foundation. 

Figure 4 represents anohher system of parent-offspring mating, in which 
each individual is bred successively with his younger parent and with his 
offspring. The path coefficient, parent to gamete, is of course the same 
in both case's. 

m = a'b' + a'b"mt . 
f = bb'm 

This gives us the same series for the percentages of heterozygosis as in 
brother-sister mating, 3, #, &, & . . . 0, as given by JENNINGS (1916, 
formula 48). 
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In  all of the preceding cases it will be seen that the present method of 
analysis gives the same results as the direct working out of the Mendelian 
formulae. We may now pass on to more complicated systems of breeding 
which would be cumbersome to deal with by direct methods. 

FIGURE 4 FIGURE 5 
FIGURE 4.-Mating of offspring with younger parent, generation after generation. 
FIGURE 5.-Continued mating of double first cousins. The original random-bred population 

breaks up into lines containing 4 individuals in each generation. 

DOUBLE FIRST COUSINS 

If mating of double first cousins is begun in a random-bred population, 
the latter becomes broken up into distinct lines of descent, each involving 
four individuals in each generation. These lines of descent may, of course, 
bifurcate a t  any time as in the case of brother-sister matings. The rela- 
tionships within a single line of descent are brought out in figure 5. Our 
problem is to express the correlation between mated individuals such as 
A and B in terms of path coefficients and correlations applying to the 
previous generation. 

The path coefficient to A from either of his parents C or D and to B 
from E or F is a'bt. C and E are brothers (or brother and sister). The 
correlation between them is thus 2a"2b"2 (1 + w i t ) .  The same is true of 
D and F. The correlation between C and F is not so obvious, but noting 
that F is a full brother of D, we see that the relationship between C and F 
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must be the same as between C and Dl which are mated individuals with 
a correlation of m'. The same is true of the relation between D and E. 

Summing up the four chains of path coefficients and correlations by 
which A and B are connected, we obtain: 

This can be simplified considerably by noting that ~ ' ~ b ~ ,  ~ " ~ b ' ~ ,  etc., 
always equals a, that b2m = f and that b2 = + (1 + j') 

From this formula we obtain a t  once a formula by which the series of 
values off can be written by inspection. 

The formula for the percentages of heterozygosis can be written by mak- 
ing the substitution f = 1 - 2 p .  

P"" 
= P I - 1 6  

The series of values of p is thus 

Each numerator is the sum of the preceding three numerators if the 
denominators are doubled each generation. 

That there is no equilibrium point until p = 0 may be seen by substi- 
tuting p"' = p" = p' = p .  

QUADRUPLE SECOND COUSINS 

Theoretically a population can be broken up into groups of eight which 
perpetuate themselves indefinitely without making matings closer than 
between second cousins. This will be clear from a study of the accom- 
panying diagram (figure 6). 

Letting roo, r,, and m be the correlations between brothers, first cousins 
and second cousins, respectively, we find by inspection of this diagram: 

m = ~ ' 2 b ' ~  (2 m 1  + 2 ril) 
ril = a112b'12 (2 wz1l + 2 Y::) 

, I  
I,, = af"2b1"2 (2 + 2) 
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Simplifying in the same way as in the case of double first cousins, we 
obtain: 

This gives a series of percentages of heterozygosis which can be expressed 
in fractions, such that each numerator is the sum of the preceding four 
numerators and the denominators double: 

( 1  2 4)  8 g 5  2 9  5 6  108 
21 3 1  8 1 1 6 9  21 F Y 1  T281 TBF . 

FIGURE 6.-Continued mating of quadruple second cousins, the population breaking up 
into lines of 8 individuals. 

OCTUPLE THIRD COUSINS 

The analogy between the results for self-fertilization, brother-sister mat- 
ings, double first cousins and quadruple sec~nd cousins, is now obvious. 
The situation in groups of 16 in which matings are between octuple third 
cousins, can be analyzed in the same way and also gives analogous results: 

MATING PERCENTAGE OF HETEROZYGOSIS 

- 

P = P' 12 

P = P ' h  + pula 
P = p' 12  + 9'' 14 + p'" 18 

P = P' 12 + P" 14 + P'" 18 + p"" 116 

1 P = P' 12  + p" l4 + p'" + p"" ha i p""' /S 

. . . . . . . . . . . . . . .  Self-fertilization. 
Brother-sister .................. 
Double first cousins. . . . . . . . . . . .  

. . . . . .  Quadruple second cousins. 
Octuple third cousins. . . . . . . . . . .  

1 
2 
4 
8 

16 
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The decrease in heterozygosis is very slow in the case of octuple third 
cousins. After 15 generations (table 2)  there is still 38 percent hetero- 
zygosis. Nevertheless it is obvious that no equilibrium point is reached 
until genetic variation is entirely eliminated. 

The systems of mating given abcve represent the least possible inbreed- 
ing within closed populations of the given size in each generation. I t  fol- 
lows that constant breeding within any population of limited size, even 
where consanguinity is avoided as far as possible, leads slowly to perfect 
homozygosis, provided that there are no disturbances from differential 
fecundity, etc. The population x2 A A  + 2xy A a  + y2 aa is in equilibrium 

only in a population of indefinitely large 
size. This increase in homozygosis is, how- 
ever, at  such a slow rate in populations 
larger than 16 (where inbreeding is avoided) 
that i t  is practically negligible. 

MATINGS OF I-IALF-BROTHER AND SISTER 

A number of systems of mating between 
half-brothers and sisters can be devised. 
The simplest, a t  first sight, is that repre- 
sented in figure 7. The population becomes 
broken into distinct lines of descent in 
which three individuals are bred in each 
gener$tion, one male and two of his half- 

FIGURE 7.--&fating of one male in sisters, which, however, are full sisters of 
each line with two each other. The correlation between mated 
sisters of each other. 

individuals, such as A and B, depends not 
only on their common sire D, but on the fact that the sire of A and the 
dam of B, and also the dam of A and sire of B, are half-brother and sister, 
and that the dams are full sisters. The correlation between half-brother 
and sister of the previous generation is m'. The correlation between full 
sisters is 2aff2bf f2  (1 -t m"). Thus the correlation between mated individ- 
uals A and B can be written 

m = a'? b'2 [I + 2m' + 2 ~ " ~ b " ~  (1 + m") ] 
= $ a'"8j"' + 4j" + f"' + 3)  

f  = $g (Sf' + 4j1' $ fl"+ 3 )  
p = ,l, (Sp' + 4p1' +pf") 
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This gives us the series of percentages of heterozygosis. 
(2 P) 13 21 
4, 8 7 1 6 9  3 2 1  6 4 7  2%) %% . . . 0. 

On going back to the derivation of the key formula, it will be seen that 
we are assuming that inbreeding is preceded by a generation in which a 
male is mated with two females unrelated to him, but full sisters of each 
other. If the three individuals in the last generation of random mating 
back of each inbred line are all unrelated, the series runs, +, A, G, +a, 
.ii'& . . . 0. 

If one male is mated with an indefinite number of his half-sisters which 
are also merely half-sisters of each other (figure 8) the analysis is even 
simpler than in the last case. The slight departure from this system 
which would be necessary to keep up the numbers in each generation may 
be neglected. 

FIGURE &-Mating of one male in each line with an indefinitely large number of half-sisters, 
which are also half-sisters of each other. 

The key formula is obviously: 

The series runs 3, &, +$, 2d6, i3d& . . . 0. Each numerator is thrice 
the preceding, plus twice the one before that, while the denominators are 
multiplied by four. 
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The last system of mating is of special interest since it is perhaps the 
most rapid practical method ofjixing characters in live stock. If a breeder 
consistently uses a single male of his own breeding to head his herd, the 
typical mating will be between half-brother and sister, the females being 
in general half-sisters of each other. There will, of course, be some more 
remote matings-half-uncle and niece, etc.,-but these will be balanced, 
in part at  least, by matings of full brother and sister, and parent and 
offspring. The rate of increase in homozygosis is fairly rapid. In  three 
generations, there is 65 percent homozygosis compared with 75 percent 
with brother-sister matings. In eight generations, the figures are 80 

FIGURE 9.- mating of each male with two half-sisters and each female with two half-brothers. 

percent and 91 percent respectively. In fifteen generations 92 percent 
and 98 percent respectively. With brother-sister mating, the herd breaks 
up into distinct lines in each generation, which cannot be held together. 
With the system under discussion, the character of the whole herd can be 
fixed a t  once. 

Another system of mating half-brothers and sisters, of more theoretical 
than practical interest, is illustrated in figure 9. Each male and female is 
mated with two half-sisters or half-brothers. While the original popula- 
tion will tend to break up into distinct groups, there is no limit to the 
size of each group. The key formula is evidently: 

where r;l is the correlation between half-first cousins of the preceding gen- 
eration. The value of r;l can be expressed in terms of auxiliary formulae: 



The writer has found no other method of solving the value of m than of 
carrying these auxiliary formulae back to the point a t  which there is ran- 
dom mating. To find the percentage of heterozygosis and the correlations 
between relatives for fifteen generations, it is necessary to find values of 
r77 in one case. 

In fifteen generations, the percentage of heterozygosis falls from 50 
percent to 24 percent. This is a much slower decline than in the other 
kinds of half-brother and sister matings considered. I t  is, however, easy 
to see that there is no equilibrium point short of complete homozygosis. 
Under equilibrium 

a2b2 = r a f 2 b ~ 2  , etc., m = m', rll = ril, etc. 

m = a (1 + 2 m + r,,) = 4 (1 + rll) 
rll = i (m + 2 rn + r22) = 3 (m + r22) 
r22 = (rll + 2 r22 + rs3) = 3 (rll + r33), etc. 

Thus under equilibrium 1, m, rll, rz2, rs3 . . . , forms an arithmetic series. 
Therefore, by going a sufficient number of generations m can be made to 
approach 1 as closely as desired. This causes b2 to approach 1, as is also 
true of f and g, while the percentage of heterozygosis, p = 3 (1 - f), 
approaches 0. 

MATING OF FIRST COUSINS 

The continued mating of first cousins as in figure 10 is a system which 
is similar to the mating of half-brother and sister in figure 9, in that the 
number of ancestors of both sexes, of a given individual, increases in arith- 
metic progression with the generations. The method of analysis is also 
similar. Inspection of the figure gives the following key equation and 
auxiliary equations : 

m = a12b'2 (ria + 2 m' + ri2) 

ri2 = (m" + 2 r;; + rii) 
I t  r33 = a l r r z  r r r2  r"' b ( 22 + 2 riit + 

The percentage of heterozygosis decreases rather slowly, only falling 
from 50 percent to 34 percent in fifteen generations. Nevertheless, the 
limit is not reached until all heterozygosis is eliminated. This can be 
demonstrated by the same reasoning as in the case of half-brothers and 
sisters. 
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FIGURE 10.-Mating of single first cousins, generation after generation. 
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HALF-FIRST COUSINS 

I t  might be thought from the preceding cases that there can be no 
equilibrium short of perfect homozygosis with any consistent system of 
inbreeding. This, however, is not the case, as may be seen from a con- 
sideration of various systems in which the consanguinity is more remote 
than between first cousins. In the case of half-first cousins (figure 11) 
there is no necessary relationship between A and B except through one 
parent of each, E and D. 

The key formula is: 

When equilibrium is reached, we find by substituting mu = m, f"' = 
1 5  

f f l  = f, prrr = pl' = p that m = A, f = 2~ and p = 33, roo = r*, = .za 

Thus the percentage of heterozygosis falls only from.50 percent to 48 
percent if the system is continued indefinitely. 

SECOND COUSINS 

The mating of second cousins according to the system in figure 12 is 
even less efficient than the mating of half-first cousins, as regards decrease 
in heterozygosis. 

The key equation is: 

m = a4bt2a"2blf2 [2  at t12  b 1112 (1 + mu') + 2 m"] 
= ar2 (1 + 8 f l 1  + 2 f I r r  + f I l l 1 )  

f = i & ( 1 + 8 f " + 2 f " ' + f " " )  
p = ih (26 + 8 p" + 2 p"' + p"") 

When equilibrium is reached 

Thus, the continued mating of second cousins causes the percentage of 
heterozygosis to fall merely from 50.0 percent to 49.1 percent. 
, The general effects of inbreeding, such as the increase in uniformity, 

the prepotency in outside crosses, the usual decline in vigor in various 
respects are in all probability merely consequences of the increase in 
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homozygosis. I t  appears that while the continued mating of first cousins 
leads to perfect homozygosis, though rather slowly, systems based on 
more remote consanguinity cause only an insignificant increase in homo- 
zygosis if kept up forever. As far as this class of effects is concerned, 
the mating of half-first cousins or second cousins need hardly be considered 
as inbreeding. I t  should be added, however, that there is a somewhat 
distinct kind of effect for which these degrees of inbreeding may have some 

FIGURE 12.-A pedigree in which all matings are between second cousins. 

significance. In the case of a characteristic which is due to a single reces- 
sive factor and is very rare in the general population, the chance of appear- 
ance following a mating which is not consanguineous is exceedingly slight, 
while the chance after a second- or even third-cousin mating i n  the 
affected family may be sufficiently great to be an important consideration. 
The chance of appearance in such a case could only be estimated by a 
study of the ancestry of the two individuals. 

We have found that continued first-cousin mating leads ultimately to 
perfect assortative mating (1.00) while half-first cousin leads odly to a 
coefficient of assortative mating of 0.07 and second-cousin mating a coeffi- 
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cient of 0.03. I t  may seem difficult to 0btain.a population in equilibrium 
with an intermediate degree of assortative mating based wholly on con- 
sanguinity (i.e., matings not made on the basis of physical resemblance). 
hppose, however, that the population is separated into non-interbreeding 
classes, such that there is a correlation of m between members of the same 
class. The correlation between two individuals chosen at random from 
the next generation, will be 4af2bt2m. The value of af2bf2 when equilib- 
rium is reached is 2. Thus, under random mating within the classes, the 
correlation of assortative mating for the whole pcpulation will remain m, 
indefinitely. 
We will have 

m g = f =  - 1 ' 1 - m  , a2 = 2 (2 - m), b2 = - p = -  
2 - m  2 - m  2 - m  

Thus with mating correlations of 0.25, 0.50 and 0.75, the percentages of 
heterozygosis will be 0.41, 0.33 and 0.20 respectively. 

Such a system of non-interbreeding classes with a high correlation 
between members of each class can arise in various ways. For example, if 
any of the systems of consanguine mating which break the population 
into distinct classes are interrupted, being followed by random mating 
within each class, such a system as that just described would be formed. 
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