
REPRINT: originally published as: Robbins, R. J., 1992. Challenges in the human genome
project. IEEE Engineering in Biology and Medicine, (March 1992):25–34.

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

CHALLENGES IN THE HUMAN GENOME

PROJECT

PROGRESS HINGES

ON RESOLVING DATABASE AND

COMPUTATIONAL FACTORS

Robert J. Robbins

Applied Research Laboratory
William H. Welch Medical Library

The Johns Hopkins University

2 ROBBINS

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

TABLE OF CONTENTS

PURPOSE AND SCOPE 2

BASIC BIOLOGICAL CONCEPTS 4

UNDERSTANDING THE SEQUENCE 7

DIRECT SEQUENCE INTERPRETATION 7
COMPARATIVE SEQUENCE ANALYSIS 9

OBTAINING THE SEQUENCE 15

COMPUTER AND BIOLOGICAL COLLABORATIONS 19

CULTURAL GAPS 19
NOMENCLATURE PROBLEMS 20

CONCLUSION 21

REFERENCES 23

REPRINT: originally published as: Robbins, R. J., 1992. Challenges in the human genome
project. IEEE Engineering in Biology and Medicine, (March 1992):25–34.

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

CHALLENGES IN THE HUMAN GENOME

PROJECT

Robert J. Robbins

lthough the Human Genome Project is well recognized as the first Big
Science project in biology, it is less well known as a major project in

computer technology and information management. By the time this project is
finished, many of its innovative laboratory methods will have begun to fade from
memory. Although a few might be preserved as exercises for undergraduates, the
rest will soon become footnotes in the history of molecular techniques. What will
remain, as the project’s enduring contribution, is a vast body of computerized
knowledge. Seen in this light, the Human Genome Project is nothing but the
creation of the most amazing database ever attempted––the database containing
instructions for building people.

The 3.3 billion nucleotides in the DNA of a human gamete constitute a single
set of these instructions. With each nucleotide represented as a single letter, one
copy of this sequence, typed (in standard pica typeface) on a continuous ribbon of
material, could be stretched from San Francisco to New York and then on to
Mexico City. No unaided human mind could hope to comprehend such a mass of
information. Just assembling, storing, publishing, and distributing (much less
understanding) such a sequence will require automation. Representing individual
variations and managing a fully annotated, functionally described version of the
sequence is probably beyond current information–handling technology.

Even now, when the Human Genome Project is merely in the first year of its
first five–year plan, computer systems are playing an essential role in all phases of
the work. Laboratory databases help manage research materials while computer–
controlled robots perform experimental manipulations. Automated data–
acquisition systems log experimental results and analytical software assists in their
interpretation. Local database systems store the accumulating knowledge of a
research team, while public databases provide a new kind of publication for
scientists to share their findings with the world.

Some genomic database and software problems are fairly straightforward.
Others will push the envelop of information–management theory. The HGP
requires a continuum of database activities, ranging from application development
to research. The research community needs production–quality, rock–solid,
public–access databases right now, but pure computational research will be
required to develop the new ideas and technologies necessary for the production–
quality databases of a decade hence. The challenges of the Human Genome Project

A

2 ROBBINS

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

will drive computational science, just as earlier challenges from genetics drove the
development of modern statistical analysis.

In the Human Genome Project, computers will not merely serve as tools for
cataloging existing knowledge. Rather, they will serve as instruments, helping to
create new knowledge by changing the way we see the biological world.
Computers will allow us to see genomes, just as radio telescopes let us see quasars
and electron microscopes let us see viruses.

PURPOSE AND SCOPE

The Human Genome Project (HGP) is an international undertaking with the
goal of obtaining a fully connected genetic and physical map of the human
chromosomes and a complete copy of the nucleotide sequence of human DNA. As
such, it has been described as the first “big science” project in biology [3], [15].
Although the computational challenges associated with the project have been
described [12], [14], some computer scientists have expressed concerns about its
complexity: “Computationally, the project is trivial. The human genome is nothing
but a string of 3.3 billion characters. Where is the challenge in representing or
manipulating this? Biologists may think that 3.3 gigabytes is a lot of data, but a
database of this size is routine in many application areas.”

Such skeptics are simply wrong. The HGP can be logically divided into two
components, getting the sequence and understanding the sequence, but neither
involves a simple 3.3 gigabyte database with straightforward computational
requirements. A computer metaphor can help establish the scope of the effort.
Consider the 3.3 gigabytes of a human genome as equivalent to 3.3 gigabytes of
files on the mass–storage device of some computer system of unknown design.
Obtaining the sequence is equivalent to obtaining an image of the contents of that
mass–storage device. Understanding the sequence is equivalent to reverse
engineering that unknown computer system (both the hardware and the 3.3
gigabytes of software) all the way back to a full set of design and maintenance
specifications.

Securing the sequence is further complicated by the fact that the mass–storage
device is of unknown design and cannot simply be read. At best, experimental
methods can be used to obtain tiny fragments of sequence from it. Because these
experimental methods are expensive ($5–10 per byte) and error prone, new
techniques are constantly being developed and tested. Meanwhile, a database must
be designed to hold the fragments that are obtained, along with a full description of
the procedures used to generate them. Because the experimental procedures change
rapidly and often radically, this is equivalent to designing and maintaining a
database for an enterprise whose operating procedures and general business rules
change weekly, perhaps daily, with each change requiring modifications to the
database schema.

Challenges in the Human Genome Project 3

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

As the sequence fragments accumulate, efforts will be made to synthesize the
fragments into larger images of contiguous regions of the mass–storage device, and
these synthesized fragments must also be represented in the database. If multiple
inferences are consistent with the present data, all of the consistent possibilities
must be represented in the database to serve as the basis for further reasoning when
more data becomes available. As even larger regions are synthesized, the entire
cascade of premisses, procedures, and logical dependencies must be stored, so that
a “logical roll–back” can occur if some new observation renders an earlier premise
doubtful. Since all of the data are obtained experimentally, each observation and
deduction will have some error term associated with it. The deductive procedures
must use these errors to assign probabilities to the various deductive outcomes
obtained and stored in the database. Thousands of researchers from independent
laboratories will be using the system and contributing data. Each will have a notion
of proper error definition and of the rules by which the errors should be combined
to provide reliability estimates for the composite sequences. Therefore, the
database must be capable of supporting probabilistic views and of returning
multiple answers, each with its own associated conditional probabilities, to any
query. The involvement of many independent researchers, each employing slightly
different experimental procedures and concepts, will also result in extensive
nomenclatural synonymy and homonymy. The database must take these
nomenclatural difficulties into account and should be able to present users with
views consistent with their own preferred usage.

Reverse engineering the sequence is complicated by the fact that the resulting
image of the mass–storage device will not be a file–by–file copy, but rather a
streaming dump of the bytes in the order they occupied on the device and the files
are known to be fragmented. In addition, some of the device is known to contain
erased files or other garbage. Once the garbage has been recognized and discarded
and the fragmented files reassembled, the reverse engineering of the codes must be
undertaken with only a partial, and sometimes incorrect understanding of the CPU
on which the codes run. In fact, deducing the structure and function of the CPU is
part of the project, since some of the 3.3 billion gigabytes are known to be the
binary specifications for the computer–assisted–manufacturing process that
fabricates the CPU. In addition, one must also consider that the huge database also
contains code generated from the result of literally millions of maintenance
revisions performed by the worst possible set of kludge–using, spaghetti–coding,
opportunistic hackers who delight in clever tricks like writing self–modifying code
and relying upon undocumented system quirks.

One computer scientist, upon hearing this metaphoric description, opined that,
far from being trivial, the HGP was simply impossible: “Why, that’s like working
with both hands tied behind your back, blindfolded, in a vacuum!” The Human
Genome Project isn’t impossible, but it is complex. The goal of this paper is to
provide an overview of the HGP that emphasizes its generic problems and
computational challenges. Presentations of actual current database and
computational efforts are available elsewhere [1], [2], [4], [5], [6], [10], [11].

4 ROBBINS

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

BASIC BIOLOGICAL CONCEPTS

Early on, biochemists established that an individual’s biological structure and
function are controlled by proteins––a workhorse set of molecules that occur in
thousands of forms to perform thousands of functions. Since the attributes of an
organism are ultimately determined by the types and quantities of proteins present
in its cells, these molecules are clearly the fundamental building blocks of life. The
human body contains 50,000 to 100,000 different kinds of protein.

Although it is their three–dimensional configuration that gives proteins their
functional specificity, chemically proteins are linear polymers called polypeptides
that contain hundreds of amino acids, linked by peptide bonds into a continuous
sequence. Proteins assume their three–dimensional shape “automatically” once
they are synthesized with a specific sequence of amino–acid subunits. Although
many kinds of amino acids exist, only twenty different forms are used in proteins.
Because proteins are linear polymers containing just twenty different subunits, the
structure of any given protein molecule can be specified with a linear string using a
twenty–letter alphabet.

In the first half of this century, classical geneticists showed that the control of
biological structure and function is passed from generation to generation in the
form of genes––hypothetical entities that occur singly in gametes (sperm and eggs)
and doubly in organisms. By 1950, it was apparent that genes had to act by
controlling the synthesis of proteins, but the means by which this might be
accomplished were a mystery.

With the demonstration that genes are made of deoxyribo–nucleic acid (DNA)
and the discovery of the structure of DNA, the science of molecular biology was
established and the first possibility of understanding gene function appeared. DNA
was found to be a linear polymer of molecular subunits called nucleotides, which
occur in DNA in four specific forms: adenine, thymine, cytosine, and guanine
(usually abbreviated as A, T, C, G). Because DNA is a linear polymer containing
just four different subunits, the structure of any given DNA molecule can be fully
specified with a linear string using a four–letter alphabet.

Since DNA and proteins can both be specified as linear strings, researchers
quickly hypothesized that genes might control the synthesis of proteins by simply
encoding their amino–acid sequences as nucleotide sequences. This proved to be
true, with the proviso that instructions encoded in DNA are first transcribed into
ribonucleic acid (RNA) polymers before being translated into the amino–acid
sequence of proteins. (RNA differs from DNA by carrying an extra hydroxyl group
on each nucleotide, and by carrying the nucleotide uracil, abbreviated U, wherever
DNA carries thymine.) When this hypothesis was established, the “fundamental
dogma” of molecular biology was born: DNA directs the synthesis of RNA, which
directs the synthesis of protein, often illustrated as

DNA RNA Proteins

Challenges in the Human Genome Project 5

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

The production of RNA from a DNA template is called transcription and the
production of protein from an RNA template is known as translation. Complexity
was added to the fundamental dogma with the recognition that (1) DNA
redundantly encodes for its own duplication, (2) DNA–directed protein synthesis
involves three different classes of RNA (tRNA, mRNA, and rRNA), and (3)
previously synthesized proteins in the form of enzymes are also key actors in both
DNA replication and protein synthesis:

DNA

rRNA

ProteinsmRNA

tRNA

The specific instructions coding the amino–acid sequence for a particular
protein are carried in the nucleotide sequence of a particular mRNA, which is
transcribed from a particular gene in DNA. The means (Figure 1) by which mRNA
sequences determine amino–acid sequences has proven to be the same for all living
things on this planet.

phe
phe
leu
leu

leu
leu
leu
leu

ile
ile
ile
met

val
val
val
val

ser
ser
ser
ser

pro
pro
pro
pro

thr
thr
thr
thr

ala
ala
ala
ala

tyr
tyr

STOP
STOP

his
his
gln
gln

asn
asn
lys
lys

asp
asp
glu
glu

cys
cys

STOP
trp

arg
arg
arg
arg

ser
ser
arg
arg

gly
gly
gly
gly

U

C

A

G

5´

U
C
A
G

U
C
A
G

U
C
A
G

U
C
A
G

3´

U C A G

Figure 1. The universal code by which genetic information in mRNA is translated into
protein. The nucleotides in an mRNA molecule are read in non–overlapping groups of
three, called codons. The “reading frame” is established by requiring that each protein
always begin with the codon AUG. As each successive codon is encountered, the protein–
synthesis machinery incorporates the amino acid given in this table. When a stop codon
(UAA, UAG, or UGA) appears, synthesis is complete. This code is used by all living things

6 ROBBINS

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

on this planet. The twenty amino acids commonly found in proteins, and their three–letter
abbreviations are:

ala alanine leu leucine
arg arginine lys lysine
asn asparagine met methionine
asp aspartic acid phe phenylalanine
cys cysteine pro proline
gln glutamine ser serine
glu glutamic acid thr threonine
gly glycine trp tryptophan
his histidine tyr tyrosine
ile isoleucine val valine

Life is fundamentally digital, not analog; genetic information is passed from
generation to generation in the form of a discrete code. The parallel analogy with
the digital encoding found on the mass–storage devices of computer systems is
almost inescapable. Capturing and understanding all of the encoded information in
human genes is the long–term goal of the human genome project.

Although the mRNA–to–protein code is straightforward, the actual process by
which information stored in a human gene becomes transformed into a protein is
considerably more complex, as shown schematically in Figure 2.

If we think of information encoded in genes as equivalent to programs
encoded on a mass–storage device, and the biological functions performed by
proteins as the execution of these programs, then the steps in Figure 2 that are
labelled “post–transcriptional processing” and “post–translational processing”
represent the actions of self–modifying code, since they involve changes to
encoded instructions performed after the instructions are “loaded” but before they
“execute.” Worse than simple self–modifying code, the protein enzymes that carry
out this post processing are more similar to software daemons that run constantly,
activating only when a particular program is loaded and then modifying that
program’s code in memory before it starts executing. Reverse engineering self–
modifying code is notorious difficult.

Because previously synthesized proteins effect, affect, and control all aspects
of the expression of genetic information, reverse engineering the human genome
will be complex, since these protein daemons interact with control signals carried
in DNA to regulate the expression of genes differently in different tissues. The
human genetic apparatus is not a mere collection of recipes for building proteins,
for if it were, cells carrying the same set of genes could not differentiate into a
variety of tissues, such as brain and muscle. Although many control mechanisms
are known, the majority are not yet well understood. Identifying and deciphering
them is a major goal of genomics.

Challenges in the Human Genome Project 7

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

P1 T1

Transcription

Post-transcriptional modification

Translation

Post-translational modification

Self-assembly to final protein

mRNA:

Primary Transcript:

Polypeptide:

Modified Polypeptide:

DNA: gene 1

Figure 2. A schematic illustration of the steps involved in DNA–directed protein synthesis.
Start and stop signals encoded in the DNA tell enzymes to begin and end transcription,
producing a primary RNA transcript. Other enzymes modify the transcript by adding or
deleting nucleotides. Most human genes contain large regions of non–coding sequences
(introns) interspersed with coding sequences (exons). The intron sequences are removed
during post–transcriptional processing, yielding a final mRNA. The mRNA is translated
into protein, using the universal code along with start and stop signals embedded in the
mRNA before and after the coding region. Translation produces a polypeptide that itself
may be subject to significant enzymatic modification. The resulting polypeptide finally
assumes its three–dimensional shape and becomes a functional protein.

UNDERSTANDING THE SEQUENCE

Soon after obtaining a DNA sequence, researchers try to identify and
understand its function through a mixture of logic and experimentation. Attempting
to understand a sequence of hexadecimal values from the mass–storage device of
some computer system would involve similar steps. This section compares the two
processes.

Direct Sequence Interpretation

Understanding an arbitrary sequence is much easier if the system and context
in which the sequence is to be interpreted are specified. For example, consider the
following RNA sequence:

AUG GUG CAC CUG ACU CCU GAG GAG AAG UCU GCC GUU

If it can be assumed that this the beginning of a coding region on an mRNA
molecule (this is, in fact, the beginning of the coding region in human ß–
hemoglobin mRNA), then interpreting the sequence requires a trivial look up in the
mRNA–to–protein dictionary, yielding:

8 ROBBINS

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

AUG GUG CAC CUG ACU CCU GAG GAG AAG UCU GCC GUU ⋅⋅⋅

met val his leu thr pro glu glu lys ser ala val ⋅⋅
Determining the actual function of a particular protein (which depends upon

its three–dimension structure) from its sequence, however, is not straightforward
and in fact is impossible with current technology. Until better algorithms are
developed, the possible outcome space for such an n–body problem is too large to
compute in reasonable time.

Now, consider the following hexadecimal sequence:

CD 05 CD 20

If it can be assumed that this is executable code from an Intel–based, MS–DOS
computer system, a knowledge of the op codes would permit the reverse assembly
to:

CD05 INT 05

CD20 INT 20

Here, too, determining actual function from an interpretation is not entirely
straightforward. For example, in MS–DOS, calling interrupt 5 triggers the “print
screen” routine in BIOS and interrupt 20 is the old “program terminate”
(equivalent to the CP/M BDOS function 00H) op code carried over from the
earliest versions of MS–DOS. A first hypothesis, then, would be that “CD 05 CD
20” could function as a self–contained executable program that printed whatever
happened to be on the screen, then returned control to the operating system.

This hypothesis, however, is not necessarily correct. Calling DOS interrupt 5
passes control to whatever routine is pointed to by the low–memory vector for INT
5. Although normally the “print screen” routine, it could be any routine left in
memory by a previously executed terminate–and–stay resident program (c.f., [9], p
128). Determining what this four–byte program actually would do at a given time
in a particular machine would involve some combination of experimentation and
further analysis of the interrupt vector table and the code addressed by the INT 5
vector.

Determining the function of a DNA sequence involves similar steps. After
obtaining a context in which to interpret the sequence (so that the relevant “op
codes” are known) analysis begins. Because the full set of biological op codes is
not yet known, and because biological subsystems are so interdependent,
considerable experimentation and comparative work is required for researchers to
generate a tentative understanding of the sequence. Part of the database and
computation challenges of the HGP is building databases for storing evolving
hypotheses regarding these biological op codes, with the ultimate goal of using
these data to write a “biological disassembler” that could recognize and interpret
all functional regions in any arbitrary piece of DNA.

Challenges in the Human Genome Project 9

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

Comparative Sequence Analysis

The previous discussion examined the interpretation of arbitrary sequences
when something is known of the system and context in which they operate. But
what if the system were unknown and the context uncertain? To illustrate one
approach to interpreting sequences from an unknown computer system, let us first
assume that we know nothing of Intel–based computers or of MS–DOS or of
ASCII, then consider the following examples.

When invoked, a particular MS–DOS program named WARMBOOT.COM
causes the same effect as pressing the ctrl–alt–delete keys––that is, it causes the
system to reboot without performing any of the system checks associated with a
cold boot. This program, in its entirety, is found to consist of the sequence:

BA 40 00 8E DA BB 72 00 C7 07 00 00 EA 00 00 FF FF

How might this program work and the sequence be interpreted? If one truly
knew nothing about this computer system, very little could be done with just this
sequence. But, suppose that another program named COLDBOOT.COM (that does
what the name implies) were also known and that the program, in its entirety,
consisted of the sequence:

BA 40 00 8E DA BB 72 00 C7 07 34 12 EA 00 00 FF FF

By aligning the two sequences and associating differences in their structure with
differences in their function, a beginning, however feeble, toward reverse
engineering MS–DOS machine code could be generated.

BA 40 00 8E DA BB 72 00 C7 07 00 00 EA 00 00 FF FFWARMBOOT:

BA 40 00 8E DA BB 72 00 C7 07 34 12 EA 00 00 FF FFCOLDBOOT:

Substituting “34 12” for “00 00” somehow changes the WARMBOOT program
into a COLDBOOT program. These bytes must be data, and the remainder
instructions for invoking the boot routine. This trivial comparison has allowed us
to get a small purchase on the problem.

Now consider a set of programs known to have similar functions. Program 1
displays “Hello world” on the terminal, and programs 2, 3, and 4 display “Hi
world,” “Goodbye world,” and “Hello,” respectively. If these are placed into a
multiple alignment (which requires inserting gaps to bring the similar regions into
apposition), we have:

EB 0D 90 48 65 6C 6C 6F -- -- 20 77 6F 72 6C 64 24 B4 00 B4 09 BA 03 01 CD 21 C31:

2:

3:

4:

EB 0A 90 48 69 -- -- -- -- -- 20 77 6F 72 6C 64 24 B4 00 B4 09 BA 03 01 CD 21 C3

EB 0F 90 47 6F 6F 64 62 79 65 20 77 6F 72 6C 64 24 B4 00 B4 09 BA 03 01 CD 21 C3

EB 07 90 48 65 6C 6C 6F -- -- -- -- -- -- -- -- 24 B4 00 B4 09 BA 03 01 CD 21 C3

10 ROBBINS

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

Even with no prior knowledge of the op codes or the character codes used by
MS–DOS systems, useful insights could be obtained from these alignments and a
knowledge of the four programs’ functions. The code sequences clearly have
regions of identity and regions of variability, and a reasonable first hypothesis
would be that the variable regions contain codes for the characters to be displayed,
and the constant regions contain instructions for displaying these characters.

An analysis of the variable regions could lead to a tentative deduction of the
entire character code, since the variable regions each seem to contain exactly the
same number of codes as of characters displayed, and adjacent letters in the
alphabet apparently have sequential code values. The hypothesized complete set of
character codes could be tested by replacing bytes in the variable region with other
values, then executing the program and recording what characters are displayed. In
fact, substituting all values from 00 through FF would allow the rapid
determination of the entire character code.

---ccaggc TTtACA ctttatgcttccggctcg- TATgtT --gtgtgga--

--tcatcgc TTGcat tagaaaggtttctggcc-- gAcctT --ataacca--

--atccatg TgGACt tttctgccgtgattata-- gAcAcT tttgttacg--

----catgt cacACt tttcgcatctttgttatgc TATggT --tatttca--

----gtgta TcGAag tgtgttgcggagtagatgt TAgAAT --actaaca--

gatcggcac gtaAgA ggttccaactttcac---- cATAAT -gaaataag--

-tttcagaa TaGACA aaaactctgagtgtaa--- TAatgT --agcctcg--

----ccgac cTGACA cctgcgtgagttgttcacg TATttT ttcactatg--

--------- TTGACA ------------------- TATAAT -----------

lacZ

malT

araC

galP1

deoP2

cat

tnaA

araE

consensus

- 35 - 10

gene name DNA sequence near transcription initiation site

Figure 3. An excerpt from an alignment performed in an effort to understand the DNA
control region that signals START OF TRANSCRIPTION for genes of the bacterium
Escherichia coli [8]. The last nucleotide in each sequence (bracketed with arrowheads) are
known to be the point of transcription initiation, with transcription proceeding to the right.
Analysis of these and many other sequences has found two regions of similarity upstream
from the start of transcription, one approximately 10 bases upstream (the –10 consensus
sequence) and the other approximately 35 bases upstream (the –35 consensus sequence).
Averages of base occurrences taken over many sequences have shown these two upstream
regions to be characterized by the consensus sequences as given in the figure. Interestingly,
even though the contents of the variable region between the consensus sequences seems to
have little or no effect upon the efficiency of the signal in initiating transcription, the length
of the variable regions does seem to have an effect, thereby demonstrating some of the
subtlety involved in biological coding. Directed mutagenesis studies have shown that

Challenges in the Human Genome Project 11

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

changes toward or away from the consensus sequences increase or decrease, respectively,
the ability of a DNA region to act as a site of transcription initiation.

Similar alignments of molecular sequences are commonly employed in
molecular biology. And, making specific substitutions in DNA, called directed
mutagenesis, is also an important experimental technique for studying biological
function and for deciphering the biological op codes in DNA. As an early example,
Hawley et al. [8] compared regions in bacterial DNA known to be the site of
transcription initiation. As Figure 3 shows, this alignment did detect regions of
similarity. However, as the figure also shows, “genomic computers” are inherently
probabilistic. That is, with the exception of the mRNA–to–protein codes, most
biological op codes occur in a variety of forms, with the different forms variously
affecting the probability that a particular event will occur. Reverse engineering a
system with probabilistic codes will certainly be more challenging than would be
the case for a system employing deterministic codes.

Returning to our computer example, let us consider another alignment, this
time between two programs with identical functionality: both write “Hello world”.

-- -- -- EB 0D 90 48 65 6C 6C 6F 20 77 6F 72 6C 64 24 B4 00 B4 09 BA 03 01 CD 21 C31:

EB 01 90 B4 00 B4 09 BA 0F 01 CD 21 EB 0D 90 48 65 6C 6C 64 20 77 6F 72 6C 6C 24 C35:

This “alignment” is more complex, but it also is especially informative when
compared with the analysis of the previous multiple alignment. Sequences 1 and 5
contain four identical subregions, but with three of them in a different order. If the
order of blocks is ignored, these two sequences are nearly identical. Twenty four of
the twenty five bytes in string 1 have an exact match in string 2.

Likewise, proteins and genes may contain permutable functional blocks.
Developing string–matching algorithms and writing software to produce “non–
linear alignments” (i.e., the recognition of variously ordered similar subregions),
even when the sequences involved may contain hundreds of thousands of
characters, is one computational challenge of the HGP. Another challenge is
developing an indexing method for some kind of n–dimensional “similarity space”
so that queries like “SELECT ALL SEQUENCES WHERE SIMILAR TO
SEQUENCE X” will execute in reasonable time, even if run against a database
containing millions of sequences comprising more than a terabyte of data.

At present, whenever a new DNA sequence is added to a DNA database, a
brute–force similarity comparison is made between that sequence and every other
sequence in the database. This is resource–intensive work, and it has been
estimated that within ten years the databases will have grown and the rate of
sequence acquisition will have increased so that it would require a teraflop
machine running all out, twenty four hours a day, just to accession and catalog
incoming sequence data. However, an appropriate similarity–space index could
entirely eliminate this computational burden.

12 ROBBINS

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

Returning again to our hexadecimal alignment problem, from the previous
multiple alignment of sequences 1 through 4 it was possible to hypothesize that the
common region of code that began with “24” and ended with “C3” was an
invariant block that contained instructions for writing a message to the screen.
However, from the alignment of sequences 1 and 5 it now appears that “24” is
more likely associated with the end of the variable block containing the message
and that “C3” more likely denotes the end of the entire program rather than just the
end of the display–message block. There is also a sequence that is nearly
equivalent to the invariant, display–message block, but with “0F” substituted for
“03.” Furthermore, we see that the two large identical blocks between sequences 1
and 5 that begin with “EB 0D 90” should probably be decomposed into two
blocks, as:

-- -- -- EB 0D 90 48 65 6C 6C 6F 20 77 6F 72 6C 64 24 B4 00 B4 09 BA 03 01 CD 21 C31:

EB 01 90 B4 00 B4 09 BA 0F 01 CD 21 EB 0D 90 48 65 6C 6C 64 20 77 6F 72 6C 6C 24 C35:

The blocks of identical or similar code can now be categorized as data
(containing characters to be displayed) or as instructions. Previous work
deciphering the character code should have established that “24” represents “$,”
and our current analysis has observed that all of the variable strings end with this
symbol, even though it is not displayed. Is “$” used as punctuation to terminate
strings? The “C3” code seems to be the terminate–program code, and “EB” is
always followed by a hexadecimal digit giving the distance in bytes to the
beginning of the next executable block. Perhaps “EB” is the jump instruction. The
“90” code seems to be doing nothing. Could it be a NO OP? Comparing the
invariant instruction block of the first multiple alignment with the equivalent
blocks in this last analysis, we see that something changes in the middle of the
coding block. Since this seems to be associated with a change in the relative
position of the variable character block, perhaps it represents an address for the
character block.

Using such techniques, it would be possible in theory to reverse engineer first
the entire set of Intel op codes and then all application codes that run on such
machines. The data– and hypothesis–management requirements for such an effort
would be daunting. We would somehow have to record, say, not only that our
current hypothesis is that “C3” is the program–terminate code, but we would also
be required to track of all of the evidence and reasoning to support that hypothesis.
At present, we would need to record that “03” and “0F” seem to involve
addressing and we would need some way to modify that when additional
information is obtained. We would have to store all known program sequences in a
database, linked to the analyses that had been done upon them. We would need to
retrieve sequences according to their similarity. Of the five screen–writing
sequences just analyzed, numbers 1 and 5 are functionally the most similar, but no
simple indexing scheme based upon their linear contents would ever place them

Challenges in the Human Genome Project 13

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

next to each other. Although we could “eyeball” the alignment of short sequences,
software would need to be developed to help us perform optimum alignments for
large sequences.

62205 ATGGTG CACCTGACTC
62221 CTGAGGAGAA GTCTGCCGTT ACTGCCCTGT GGGGCAAGGT GAACGTGGAT GAAGTTGGTG
62281 GTGAGGCCCT GGGCAGgttg gtatcaaggt tacaagacag gtttaaggag accaatagaa
62341 actgggcatg tggagacaga gaagactctt gggtttctga taggcactga ctctctctgc
62401 ctattggtct attttcccac ccttagGCTG CTGGTGGTCT ACCCTTGGAC CCAGAGGTTC
62461 TTTGAGTCCT TTGGGGATCT GTCCACTCCT GATGCTGTTA TGGGCAACCC TAAGGTGAAG
62521 GCTCATGGCA AGAAAGTGCT CGGTGCCTTT AGTGATGGCC TGGCTCACCT GGACAACCTC
62581 AAGGGCACCT TTGCCACACT GAGTGAGCTG CACTGTGACA AGCTGCACGT GGATCCTGAG
62641 AACTTCAGGg tgagtctatg ggacccttga tgttttcttt ccccttcttt tctatggtta
62701 agttcatgtc ataggaaggg gagaagtaac agggtacagt ttagaatggg aaacagacga
62761 atgattgcat cagtgtggaa gtctcaggat cgttttagtt tcttttattt gctgttcata
62821 acaattgttt tcttttgttt aattcttgct ttcttttttt ttcttctccg caatttttac
62881 tattatactt aatgccttaa cattgtgtat aacaaaagga aatatctctg agatacatta
62941 agtaacttaa aaaaaaactt tacacagtct gcctagtaca ttactatttg gaatatatgt
63001 gtgcttattt gcatattcat aatctcccta ctttattttc ttttattttt aattgataca
63061 taatcattat acatatttat gggttaaagt gtaatgtttt aatatgtgta cacatattga
63121 ccaaatcagg gtaattttgc atttgtaatt ttaaaaaatg ctttcttctt ttaatatact
63181 tttttgttta tcttatttct aatactttcc ctaatctctt tctttcaggg caataatgat
63241 acaatgtatc atgcctcttt gcaccattct aaagaataac agtgataatt tctgggttaa
63301 ggcaatagca atatttctgc atataaatat ttctgcatat aaattgtaac tgatgtaaga
63361 ggtttcatat tgctaatagc agctacaatc cagctaccat tctgctttta ttttatggtt
63421 gggataaggc tggattattc tgagtccaag ctaggccctt ttgctaatca tgttcatacc
63481 tcttatcttc ctcccacagC TCCTGGGCAA CGTGCTGGTC TGTGTGCTGG CCCATCACTT
63541 TGGCAAAGAA TTCACCCCAC CAGTGCAGGC TGCCTATCAG AAAGTGGTGG CTGGTGTGGC
63601 TAATGCCCTG GCCCACAAGT ATCACTAA

 1 AUG GUG CAC CUG ACU CCU GAG GAG AAG UCU GCC GUU ACU GCC CUG UGG
 49 GGC AAG GUG AAC GUG GAU GAA GUU GGU GGU GAG GCC CUG GGC AGG CUG
 97 CUG GUG GUC UAC CCU UGG ACC CAG AGG UUC UUU GAG UCC UUU GGG GAU
 145 CUG UCC ACU CCU GAU GCU GUU AUG GGC AAC CCU AAG GUG AAG GCU CAU
 193 GGC AAG AAA GUG CUC GGU GCC UUU AGU GAU GGC CUG GCU CAC CUG GAC
 241 AAC CUC AAG GGC ACC UUU GCC ACA CUG AGU GAG CUG CAC UGU GAC AAG
 289 CUG CAC GUG GAU CCU GAG AAC UUC AGG CUC CUG GGC AAC GUG CUG GUC
 337 UGU GUG CUG GCC CAU CAC UUU GGC AAA GAA UUC ACC CCA CCA GUG CAG
 385 GCU GCC UAU CAG AAA GUG GUG GCU GGU GUG GCU AAU GCC CUG GCC CAC
 433 AAG UAU CAC UAA

 1 val his leu thr pro glu glu lys ser ala val thr ala leu trp
 16 gly lys val asn val asp glu val gly gly glu ala leu gly arg leu
 32 leu val val tyr pro trp thr gln arg phe phe glu ser phe gly asp
 48 leu ser thr pro asp ala val met gly asn pro lys val lys ala his
 64 gly lys lys val leu gly ala phe ser asp gly leu ala his leu asp
 80 asn leu lys gly thr phe ala thr leu ser glu leu his cys asp lys
 96 leu his val asp pro glu asn phe arg leu leu gly asn val leu val
 111 cys val leu ala his his phe gly lys glu phe thr pro pro val gln
 128 ala ala tyr gln lys val val ala gly val ala asn ala leu ala his
 144 lys tyr his

transcription and
post-transcriptional processing

translation and
post-translational processing

DNA:

mRNA:

Protein:

Figure 4. An illustration of the decoding involved in the synthesis of human ß–hemoglobin
from information encoded in the DNA of human chromosome 11. The caption “DNA”
labels an excerpt containing the coding region of the gene for ß–hemoglobin, taken from a
73,326–base sequence (Genbank) spanning a region on the short arm of chromosome 11.
To produce the actual protein, all of the DNA is first copied into RNA (in which all of the
T’s are replaced with U’s). Next, the RNA is subjected to post–transcriptional processing
that removes all of the bases transcribed from those shown in lower case. The resulting
functional mRNA is then translated into protein according to the universal code shown in

14 ROBBINS

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

Figure 1. Finally, the first amino–acid (methionine) is removed during post–translational
processing, yielding a molecule of normal human ß–hemoglobin containing 146 amino
acids arranged in a specific sequence.

If we were to reverse engineer a full 3.3 gigabytes of files, while at the same
time deducing the op codes and architecture of the CPU, the database requirements
for recording of all of our experimental observations and tentative hypotheses
would be enormously complex. If the 3.3 gigabytes of files were written by
undisciplined hackers prone to clever tricks, our work would be rendered much
more difficult. So it is with the reverse engineering of genomes. Gigabytes of
sequence, once obtained, are just the beginning. The database requirements are
horrendously complex, because even the concepts and definitions of the objects to
be databased can change with each new observation.

Improved methods need to be developed for automatically aligning,
interpreting, and decoding biological sequences. Despite the universality of the
mRNA–to–protein dictionary, the presence of complex, not fully understood,
control sequences within coding regions makes even automatic decoding still an
unsolved problem. Figure 4 shows an actual DNA sequence that codes for ß–
hemoglobin, a component of the functional hemoglobin that carries oxygen in the
blood.

Notice that there are non–coding regions (called introns) interspersed within
the coding regions. Even individual codons may be divided. Before the RNA
transcript from this gene becomes functional mRNA, the introns must be removed,
or “spliced out.” Although researchers have empirically determined the point of
splicing (“splice junctions”) for this gene, the algorithmic detection of all splice
junctions in all genes cannot be done. We have not yet determined precisely how
splice junctions are encoded in DNA, despite the fact that alignment analysis has
detected some apparent consensus sequences. Thus, to allow the useful deduction
of protein sequences from DNA sequences in a genome database, the DNA
sequences must be accompanied with a significant amount of annotation, much of
which must be determined empirically and entered by hand.

Because human–genome researchers are interested in the biological and
medical effects of human genes, descriptions and commentaries regarding these
must also be collected and stored in databases. The human ß–hemoglobin gene
spans a mere 2000 nucleotides, yet the current commentaries about it in various
databases (e.g., GenBank, for annotated DNA sequences, PIR, for annotated
protein sequences, and OMIM, for medical commentary on human genes)
collectively already contain more than 500,000 bytes of information. If such an
information amplification occurred over the entire genome, the HGP would
ultimately involve terabytes of processed information and commentary.

Although this amplification ratio is not likely apply evenly to all portions of
the genome, it might well apply to all genes. The ß–hemoglobin gene just happens
to be one of the best studied human genes to date. As the Human Genome Project
and related research continue, the data– and information–handling problems
associated with the understanding–the–sequence component of the project will

Challenges in the Human Genome Project 15

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

certainly challenge, in complexity and in volume, the capabilities of database
technology.

OBTAINING THE SEQUENCE

DNA in cells is organized into structures called chromosomes, each of which
consists of one long DNA molecule, accompanied by numerous protein molecules.
Normal human cells carry 46 chromosomes; 23 are contributed by each parent.
Although human cells are not visible to the naked eye, they contain DNA
molecules which, stretched and layed end to end, would be more than three feet
long. Human chromosomes occur in a variety of sizes over approximately a 5:1
ratio (Figure 5).

chromosome percent of
genome

number of
base pairs

1 8.10% 267,142,857
2 7.71% 254,571,429
3 6.48% 213,714,286
4 6.00% 198,000,000
5 5.81% 191,714,286
6 5.62% 185,428,571
7 5.14% 169,714,286
8 4.67% 154,000,000
9 4.57% 150,857,143

10 4.38% 144,571,429
11 4.38% 144,571,429
12 4.38% 144,571,429
13 3.62% 119,428,571
14 3.43% 113,142,857
15 3.24% 106,857,143
16 3.14% 103,714,286
17 3.05% 100,571,429
18 2.76% 91,142,857
19 2.57% 84,857,143
20 2.38% 78,571,429
21 1.81% 59,714,286
22 1.90% 62,857,143
X 4.86% 160,285,714
Y 2.10% 69,142,857

Total in Genome: 3,300,000,000
Average per chromosome: 143,478,261

Figure 5. The relative sizes and estimated nucleotide content of the 22 human autosomes
and the X and Y sex chromosomes.

Because chromosomes are molecules only a few atoms wide but several inches
long, they are fragile and break easily if manipulated. In the course of their work,

16 ROBBINS

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

molecular biologists break them into random fragments. These fragments are then
picked up individually by thousands of “vector” micro–organisms, each of which
carries a human fragment and replicates the human DNA along with its own DNA.
When a large population is later grown from a single individual micro–organism
that is carrying just one fragment from human DNA, that population provides a
ready source of multiple copies of a particular small region of human DNA.
Complete sets of such clones, each carrying different fragments from the entire
genome are known as “libraries.”

Although cloning techniques provide ready sources of human DNA, they
provide no immediate way to determine the precise location in the human
chromosomes from which the DNA originated. Determining this location requires
further experimentation. Because the fragments are generated at random, a library
set of fragments spanning a total length far in excess of one human genome is
required in order to ensure a reasonable probability that any particular piece of
human DNA will be carried in at least one clone. The ratio of excess DNA that
must be cloned in order to ensure reasonable coverage of the genome is, of course,
a function of the size of the fragments generated and of the degree of certainty
required. With modern clone–manipulation technology, about a five–fold set of
DNA must be cloned to generate adequate coverage of the genome. This means
that a good human genome clone library would contain between 15 and 20 billion
base pairs of human DNA.

If each of these clonal fragments could be readily sequenced (i.e., nucleotide
sequence determined), assembling the final human genome would be
straightforward. The clonal sequences would be compared with each other, regions
of overlap detected, and the final sequence assembled. However, at present,
sequencing DNA is expensive (about $5–10 per base) and time consuming. To
avoid the waste that completely sequencing a five–fold redundant set of DNA
would entail, one of the preliminary goals is to study the clones in an effort to
determine the minimum spanning set of DNA fragments required to cover the
entire genome. Then, when sequencing techniques have been improved to a cost of
less than $0.50 per base (another of the goals of the HGP), an all–out effort to
sequence the minimal spanning set will commence.

There are many techniques for building minimal spanning sets, and improved
ones are constantly being developed. Basically, each technique involves
performing some partial characterization on each fragment and then comparing the
partial characterization scores for each pair of fragments to determine the
probability of overlap between the two fragments. The resulting NxN probability
matrix is used to deduce sets of overlapping fragments. Each set of contiguous,
overlapping fragments is known as a contig. Once the entire sequence is spanned
by one large contig, the resulting minimal set of spanning fragments can be
sequenced and the final, overall sequence assembled.

The process of fragment characterization and contig assembly is complicated
by the occurrence of both random and systematic error. Some of the partial
characterization measurements may be in error, some clones may actually carry

Challenges in the Human Genome Project 17

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

fragments from two or more locations in the genome, some different regions of the
genome may carry identical sequences, some specific human sequences may be
systematically resistant to being incorporated in micro–organism clones, and
finally, some additional sources of error are undoubtedly as yet unknown.

Restriction cleavage

Cosmid or YAC cloning

DNA isolation

Multiple restriction cleavage

Fragment separation

Gel reading

Fragment sizing

Fragment overlap analysis

Consensus map assembly

Contig assembly

Consensus map assembly

Database submission

Further analysis

Robotics

Sample tracking
Laboratory notebook

Inventory control
Robotics

Robotics

Image analysis

Curve fitting

Automatic map generation

Contig assembly software

Map assembly software

Database exchange formats/protocols
Database design

Database access tools
Miscellaneous analysis software

High-Resolution Physical
(Contig) Mapping

Computational
Component

and/or

and/or

and/or

Figure 6. Schematic diagram of the experimental steps involved in high–resolution physical
mapping of chromosomes. The column on the right gives the computational activities
associated with each experimental step. (Figure adapted from [12].)

The information–handling requirements for this work are: build a database that
can (1) hold all of the different and inconsistent and rapidly changing data and
metadata describing the sequence fragments and their partial characterizations as
they are obtained; (2) track the assembly of fragments into provisional contigs; (3)
represent error and uncertainly associated with nearly every measurement and
inference; (4) rapidly adapt to recording data for experimental procedures that may

18 ROBBINS

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

change almost daily; and (5) allow the comparison and merger of contigs prepared
with different experimental and computation techniques.

M13 subcloning

Cosmid or YAC cloning

DNA isolation

Sequencing reactions

Fragment separation

Autoradiography

Gel reading

Base calling

Preliminary analysis

Database submission

Further analysis

Sample tracking

Sample tracking
Laboratory notebook

Inventory control
Robotics

Robotics

Robotics

Image analysis

Image analysis

Sequence analysis: similarity search,
ORF/coding-region detection

Database exchange formats/protocols
Database design

Database access tools
Miscellaneous analysis software

Large-Scale
DNA Sequencing

Computational
Component

and/or

Figure 7. Schematic diagram of the experimental steps involved in large–scale DNA
sequencing. The column on the right gives the computational activities associated with each
experimental step. (Figure adapted from [12].)

It is hoped that ultimately the various efforts of multiple researchers will
converge upon a single, correct set of contigs that span the entire sequence.
However, while the work is ongoing, it will be necessary to maintain in the
database all of the different, inconsistent, and overlapping versions for subparts of
the problem.

Every stage in contig assembly and in bulk sequencing benefits from computer
assistance. Since actual experimental manipulations involve handling tens of
thousands of tiny samples, robotics are required to keep errors at a minimum. Raw
data from these experiments come in the form of images, whose manual translation
into numerical form is prohibitively time consuming. Because valid biological
experiments must be capable of replication, computerized inventory control is

Challenges in the Human Genome Project 19

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

required to track the literally tens of thousands of components involved in complex
experimental designs. As data are analyzed, determining the optimum next
experiment may involve complex combinatorics, so laboratory–assistant software
is needed to plan and manage laboratory experimentation. Figures 6 and 7 show
some of the experimental steps, and their computational counterparts, for both
contig assembly and large–scale DNA sequencing.

Ullman [13] has commented on current database systems:

The modification of the database scheme is very infrequent, compared to the rate
at which queries and other data manipulations are performed... The classical form
of database system ... was designed to handle an important, but limited class of
applications. [For example,] files of employees or corporate data in general,
airline reservations, and financial records. The common characteristic of such
applications is that they have large amounts of data, but the operations to be
performed on the data are simple. In such database systems, insertion, deletion,
and retrieval of specified records predominates, and the navigation among a small
number of relations or files ... is one of the more complex things the system is
expected to do.

With genome laboratory–support databases, schema–change requests can
occur almost daily, and queries and updates that involve joins across fifteen or
twenty tables would not be unusual. If Ullman’s characterization of database
technology is considered accurate, the HGP offers a real computational challenge
to database theoreticians.

COMPUTER AND BIOLOGICAL COLLABORATIONS

The success of the HGP will depend upon advances in both biology and
computer science. This duality will necessitate effective collaborations, since the
there are few individuals with true knowledge in both areas. (Developing programs
to train scientists for this area is yet another computational challenge.) Although
such collaborations can undoubtedly be both productive and fulfilling, there are
many pitfalls awaiting those who try. Avoiding the pitfalls to effect collaborations
is yet another challenge. This section touches upon two problem areas.

Cultural Gaps

Differences in training create a cultural gap that can make communication
between biologists and computer scientists especially difficult. To deal with
diversity, biologists learn to extract signal from noise and to suppress their
attention to occasional variants and problem cases. In contrast, software engineers
learn to emphasize atypical cases, since these are the most likely places for
software designs to fail. As a result, whenever computer scientists attempt to assess
the requirements of a particular biological information system, they can be misled
if biologists underestimate the complexity of their requirements by orders of
magnitude. Systems analysts should recognize that when a biologist says, “All A’s

20 ROBBINS

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

are B,” what may be meant is “Some A’s are B, and the rest are not well
understood.” As a more specific example, a biologist may claim, “Of course we
have to keep track of the organism from which the DNA was obtained, but that’s
straightforward,” neglecting to mention that “keeping track of the organism”
involves dealing with several million species names, synonyms, and homonyms, all
of which are logically connected as a directed acyclic graph that individual
researchers will most likely prefer to view as consistent spanning trees of their
choosing.

The peril of being misled by biologists’ inclination to simplify is real. One
prominent database researcher, after meeting with an equally prominent geneticist,
recently concluded that the information–handling requirements of the genome
project were trivial. “He told me that representing the genome merely involved
storing descriptive attributes for a set of at most 100,000 objects that must be
arranged in a linear order. I told him that that could be handled by any competent
undergraduate.” After further discussions, that same database worker has now
come to believe that unsolved database problems exist in the HGP and will likely
begin directing some of his own research toward addressing these challenges.

Nomenclature Problems

Scientific nomenclature presents a special problem for database designers,
since the meaning of scientific terms varies between specialties and over time.
Because the databases associated with the HGP cannot be merely a snapshot of the
current consensus, but rather must remain valid indefinitely, the databases must be
designed to track changes in meaning. Even the most basic genetic concepts, like
“gene” and “locus,” mean different things to different biologists. At a recent
conference, a group of bacterial geneticists were asked, “Suppose that a
translocation has occurred so that all of the DNA for a given gene has been moved
to a different position on the chromosome. Do we say that the gene has a new
locus, or do we say that the gene’s locus is at a new position?” All of the biologists
claimed the question was trivial, but when pressed they split evenly in choosing an
answer. If a requirements analyst had interviewed only one biologist on these
definitions, the resulting system would have been perceived as inadequate by the
fifty percent of biologists with differing views. Seeking the common semantic
denominator introduces complexity, so that it is probably true that in order to meet
the needs of many biologists, the logical atoms in a biological database should be
defined at a level of detail and complexity greater than that needed by any one
biologist.

Variations in concept definitions do not seem to impede the practice of
biology, since biologists constantly refine their beliefs through the reality–check of
experimentation. In addition, most scientists rarely read old literature and thus are
unaware of the full extent of concept drift in their fields. Therefore, biologists
often assert that terminological fluidity is not an issue in biological database
design. This is a mistake. Many biologists don’t immediately appreciate that, in a

Challenges in the Human Genome Project 21

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

database built with five percent error in the definition of individual concepts, a
query that joins across 15 concepts has less than a 50:50 chance of returning an
adequate answer. If genomic databases are going to tolerate fuzzy concepts while
providing good answers to complex queries, systems much more sophisticated than
textbook business databases will have to be built.

Previous thinking about formalizing a science can provide insights to the
developers of scientific databases. Because every tuple in a relational database may
be regarded as a formal assertion in predicate calculus about the subject domain of
the database, building a genetic database bears much in common with developing a
formal, axiomatic structure for genetics. Although several efforts have been made
to formalize genetics, none has met with recognized success. Forty years ago, J. H.
Woodger [16] made an heroic attempt to develop a formal genetic calculus, yet
today no practicing geneticist is familiar with his work. Nonetheless, his
observations are relevant to those building genetic databases. For example,
Woodger noted that the language of geneticists is usually not as complex as their
thoughts:

Geneticists, like all good scientists, proceed in the first instance intuitively and ...
their intuition has vastly outstripped the possibilities of expression in the ordinary
usages of natural languages. They know what they mean, but the current linguistic
apparatus makes it very difficult for them to say what they mean. This apparatus
conceals the complexity of the intuitions. It is part of the business of genetical
methodology first to discover what geneticists mean and then to devise the
simplest method of saying what they mean. If the result proves to be more
complex than one would expect from the current expositions, that is because these
devices are succeeding in making apparent a real complexity in the subject matter
which the natural language conceals.

This was written in 1952, before the discovery of DNA structure and the
advent of molecular biology. Woodger’s observations are even more applicable
today.

The analysis and design efforts required to build genomic information systems
will be a continuing computational challenge of the HGP. Building genomic
databases without striving to ferret out, understand, decompose, and represent the
underlying conceptual complexity is inviting failure. Yet most biologists consider
worrying about nomenclatural details to be definitive tedium. Getting past these
difficulties, to build truly useful information resources for the HGP, will tax the
skills (and the patience) of computer scientists and biologists alike.

CONCLUSION

Database and computational activities are an essential part of the Human
Genome Project. If this aspect is not handled well, the HGP could consume
billions of dollars and researchers might still find it easier to obtain data by

22 ROBBINS

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

repeating experiments than by querying a database. Should that happen, the project
could reasonably be called a failure.

Some genomic database and software problems are fairly straightforward.
Others will push the envelop of information–management theory. The HGP needs
a continuum of database activities, ranging from pure application development to
pure research. The research community needs production–quality, rock–solid,
public–access databases right now. But research will be required to develop the
new ideas and technologies necessary for the production–quality databases of a
decade hence. The challenges of the Human Genome Project will drive
computational science, just as earlier challenges from genetics drove the
development of modern statistical analysis. (Regression analysis and analysis of
variance were both initially devised, by Galton and Fisher respectively, to deal
with genetic problems.)

In the Human Genome Project, computers will not merely serve as tools for
cataloging existing knowledge. Rather, they will serve as instruments, helping to
create new knowledge by changing the way we see the biological world.
Computers will allow us to see genomes, just as radio telescopes did for quasars
and electron microscopes for viruses.

Challenges in the Human Genome Project 23

PAPERS_1:\\PAPERS\UMDNJ\WORD-VER\UMDNJ.DOC © 1994,1995 Robert J. Robbins

REFERENCES

[1] S. Barron, M. Witten, R. Harkness, and J. Driver, “A bibliography on computational
algorithms in molecular biology and genetics,” CABIOS, vol 7, no. 2, p. 269, 1991.

[2] S. Barron, M. Witten, R. Harkness, and J. Driver, “A bibliography on computational
algorithms in molecular biology and genetics,” Advances in Mathematics and
Computers in Medicine, vol. 6, in press, 1991.

[3] C. R. Cantor, “Orchestrating the human genome project,” Science, vol. 248, pp. 49–
51, 1990.

[4] M. J. Cinkosky, J. W. Fickett, P. Gilna, and C. Burks, “Electronic data publishing
and GenBank,” Science, vol. 252, pp. 1273–1277, 1991.

[5] R. R. Colwell [Ed.], Biomolecular Data: A Resource in Transition. New York:
Oxford University Press, 1989.

[6] B. J. Culliton, “Mapping terra incognita (humani corporis),” Science, vol 250, pp.
210–212, 1990.

[7] W. Gilbert, “Towards a paradigm shift in biology,” Nature, vol. 349, p. 99, 1991.

[8] D. K. Hawley, and W. R. McClure, “Compilation and analysis of Escherichia coli
promoter DNA sequences,” Nucleic Acids Research, vol. 11, pp. 2237–2255, 1983.

[9] R. Jourdain, Programmer’s Problem Solver for the IBM PC, XT, & AT. New York:
Brady Communications Company, Inc, 1986.

[10] M. L. Pearson, and D. Söll, “The human genome project: A paradigm for information
management in the life sciences, The FASEB Journal, vol 5, pp. 35–39, 1991.

[11] J. C. Stephens, M. L. Cavanaugh, M. I. Gradie, M. L., Mador, and K. K. Kidd,
“Mapping the human genome: Current status,” Science, vol 250, pp. 237–244, 1990.

[12] United States Department of Health and Human Services, Public Health Service,
National Institutes of Health, National Center for Human Genome Research, Annual
Report I––FY 1990. Washington, DC: Government Printing Office, 1991.

[13] J. D. Ullman, Principles of Database and Knowledge–Base Systems, Volume 1.
Rockville, Maryland: Computer Science Press, 1988.

[14] United States National Academy of Sciences, National Research Council,
Commission on Life Sciences, Board on Basic Biology, Committee on Mapping and
Sequencing the Human Genome, Mapping and Sequencing the Human Genome.
Washington, DC: National Academy Press, 1988.

[15] J. D. Watson, “The human genome project: Past, Present, and Future,” Science, vol
248, pp. 44–48, 1990.

[16] J. H. Woodger, Biology and Language. Cambridge: Cambridge University Press,
1952.

